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2 INFM-CRS SOFT, Università di Roma La Sapienza, Piazza Aldo Moro 2, I-00185 Roma, Italy
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Abstract
We report extensive numerical simulations in the glass region for a simple model
of short-ranged attractive colloids, the square well model. We investigate the
behaviour of the density autocorrelation function and of the static structure
factor in the region of temperatures and packing fractions where a glass–glass
transition is expected according to theoretical predictions. We strengthen our
observations by studying both waiting time and history dependence of the
numerical results. We provide evidence supporting the possibility that activated
bond-breaking processes destabilize the attractive glass, preventing the full
observation of a sharp glass–glass kinetic transition.

1. Introduction

The combination of theory [1–7], experiments [8–12] and numerical simulations [13–18] for
short-ranged attractive colloidal systems, i.e. colloid–polymer mixtures in which the size of
the polymers is only a few per cent of that of the colloidal particles, has led in the last few
years to clear evidence of anomalous dynamical properties for dense colloidal systems. In
particular, the existence of a re-entrant region of (super-cooled) liquid state, which is stable up
to packing fractions higher than the correspondent purely repulsive system (hard spheres), has
been established. From this liquid region one can approach dynamical arrest in two distinct
ways [19], depending on which control parameters for the system are manipulated. Thus,
an increase of colloid density leads to the well known hard-sphere (or simply ‘repulsive’)
glass, while a stronger attraction, which is experimentally realized via an increase of polymer
concentration, produces the so-called attractive glass, where colloidal particles are stabilized
by ‘bonding’. Moreover, an efficient competition between these two mechanisms of arrest
originates a peculiar behaviour of dynamical correlation functions within the re-entrant fluid
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region, in particular a logarithmic decay for the density autocorrelation functions and a sub-
diffusive regime for the mean squared particle displacement [15, 16, 20, 27]. All these features
were first predicted by the mode coupling theory (MCT) [21] on the basis of the existence in
the control parameter space for these systems of a higher order singularity in the solutions
of MCT equations, which entirely governs the anomalous dynamics. This particular point
in the phase diagram, named the A4 singularity, is found for a particular value of the three
control parameters, i.e. temperature, volume fraction of the colloids and range of the attractive
interaction, where the liquid, the attractive glass and the hard-sphere glass solutions all merge
into a single point. The key parameter for the existence of such a point is the attractive
range of the potential � (experimentally set by the ratio of polymer gyration radius to the
colloidal radius): for � > �∗ there is no distinction between the two glassy states, while
for � < �∗ there exists a discontinuous glass–glass transition between the two [3, 4]. The
glass–glass transition terminates at an end-point, named A3, beyond which the two glasses
are indistinguishable. Such a kinetic glass–glass transition is one of the most difficult MCT
predictions to detect, due to the fact that it lies entirely in a non-equilibrium region where both
experiments and simulations are highly non-trivial.

On the other hand, while there is convincing evidence, also for molecular glass-formers,
of the accuracy of MCT predictions in the liquid regime [22], the same does not apply for
regions where the theory predicts a glass. Indeed, the MCT glass is commonly termed ‘ideal’,
because it arises without the inclusion of the so-called hopping processes, i.e. further relaxing
processes which eventually allow the system to still restore ergodicity, beyond the ideal MCT
transition [23]. This may be better explained in the free energy landscape picture, where a
glassy state is represented as a local (metastable) minimum and a hopping process corresponds
to a jump between different minima, via a low order saddle-point [24].

In this paper, we report an extensive numerical study of the glass–glass transition for a
specific simple model [15], for which the locations of the MCT transition lines and of the higher
order singularity have been extensively studied and estimated via a mapping procedure [16, 27].
Thereby, after explaining in detail how this mapping is performed,we report results in the glassy
region, including static and dynamical properties of the glassy states, as well as comparing
results obtained following different histories for the system, due to their non-equilibrium nature.
This will confirm the importance of hopping processes in some mechanisms of glassification,
and provide more insight into the MCT applicability to describe different mechanism of arrest.
A short account of the main results was already anticipated in a recent letter [29].

2. Methods

We perform event-driven molecular dynamics simulations for a binary mixture of particles
interacting via a narrow square-well (SW) potential. The parameters of the mixture are
chosen in order to avoid crystallization in the system. Thus, we consider a 50:50 mixture
of 700 particles of mass m with diameters σAA = 1.2 and σBB = 1; the hard-core diameter
for the AB interaction is σAB = (σAA + σBB)/2. We fix the width of the attractive well as
�i j/(σi j +�i j) = 3%. Temperature is measured in units of the well-depth u0, while time units
are σBB(m/u0)

1/2.
This system was extensively studied previously by means of theory (MCT) and

simulations. The combination of both tools allowed us to determine, within some
approximations, the location of the MCT lines, and consequently of MCT higher order
singularities, for this particular system. In this way, we obtain the best possible diagram for
studying the dynamics of the system near the A4 singularity [16] and crossing the glass–glass
transition [29].
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Figure 1. Left-hand panel: diffusion coefficients in the liquid region for various studied
temperatures. Dashed lines are power-law fits, with parameters φg, i.e. the glass transition packing
fraction at which D = 0, and the exponent γ . Right-hand panel: behaviour of γ , and of the
exponent parameter λ, with temperature.

Here, we briefly review how this mapping procedure between theory and simulations is
performed. First, we solved MCT equations for our particular binary mixture using as inputs
the partial static structure factors calculated within the Percus–Yevick (PY) approximation [28].
In particular, for the static structure calculations, we solved numerically the Ornstein–Zernike
equation on a grid of 20 000 wavevectors, with mesh 0.314 1593, while for the binary MCT
equations we used a grid of 2000 wavevectors with the same mesh. By solving the equations
for a large range of T –φ values, the PY–MCT glass lines have been determined. Next, we
calculated the diffusion coefficients from simulations in the liquid region,covering four decades
in diffusivity values. A fit of these values according to the power-law D ∼ (φ − φg(T ))γ

provides estimates for the glass transition packing fraction φg(T ) (at which the diffusion
coefficient would vanish) for the various isotherms and a characteristic exponent γ , which,
according to MCT predictions, should grow near a higher order singularity. Note that γ

is related to the exponent parameter λ which becomes exactly equal to unity at the MCT
singularities (A3, A4). Figure 1 shows the fit of the diffusivity data, together with the parameters
γ and λ obtained from them. Errors in these values are given by the errors in the fits4. The
locus φg(T ) provides the best numerical estimate of the glass transition lines. Next we perform
a bilinear transformation in the control parameter space (φ, T ), to superimpose the PY–MCT
results for the ideal glass line with the extrapolated results from the simulations, following an
idea proposed by Sperl [27]. The resulting transformation is found to be

φsim → 1.897φMCT − 0.3922;
Tsim → 0.5882TMCT − 0.225.

(1)

This transformation provides a tool for comparing theoretical predictions and simulation
results. Improvements over such a procedure could be obtained by using the numerical ‘exact’

4 The values of γ reported in [15] are consistently higher than those of figure 1, due to the smaller number of numerical
points available there and consequently higher uncertainty in the fits.
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Figure 2. Map of the simulations. We consider two initial state points, labelled A and B, lying
along the iso-diffusivity curve (diamond—small dashed curve) calculated in [15], respectively close
to the hard-sphere and to the attractive glass transition. We compress these configurations up to
two isochores, φ = 0.625 and 0.635, and follow quenches at various temperatures (crosses–dotted
lines). The solid curve is the mapped glass line from [16], as described in the text.

structure factors as opposed to the PY closure in the estimate of the ideal MCT lines. Indeed,
despite the quite good agreement of the PY solutions, small differences between PY and
numerical structure factors are crucial for a full quantitative agreement of theory and simulation
results, as recently discussed in [30]. Assuming that the bilinear transformation is invariant
for small changes of �, we can locate theoretically the position of the A4 singularity, moving
along the �-axis in the control parameter space and find the corresponding location for the real
system [16]. The qualitative general agreement between predictions and simulation results for
the mean squared displacement and density auto-correlation functions shown in [16] strongly
supports the validity of the mapping procedure. Having established the quality of the mapping,
we can locate the theoretically predicted glass–glass transition for the � = 0.03 case which
refers to the present simulation parameters. More specifically, the glass–glass line is found
to be located in the (φ, T )-plane approximately between (0.625, 0.37) and (0.64, 0.41). The
resulting liquid–glass and glass–glass lines for the model are shown in figure 2.

Our aim is to perform MD simulations across the glass–glass transition line and study
the dynamical properties, in particular the collective density–density correlation functions,
both in the hard-sphere and in the attractive glass region. A discontinuity in such properties
should be observed, according to MCT, at the glass–glass transition. In order to access the
glass region, we used the following procedure, that is schematized in figure 2. We consider
the slowest equilibrated liquid state point in the re-entrant region, i.e. corresponding to initial
packing fraction and temperature of φi = 0.612 and Ti/u0 = 0.6 (labelled as A in the figure).
We then rapidly compress the configuration by progressively growing the particle radii in
successive steps. In order to investigate the glass–glass transition we choose to compress the
system isothermally φ = 0.625 and up to 0.635. At each of the two packing fractions, we
then suddenly change the mean square velocities to achieve configurations at several different
temperatures (indicated with crosses). A thermostat with a very short characteristic time
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kept the temperature constant during the subsequent ageing evolution. This procedure has
been repeated for 136 independent initial configurations extracted from the initial equilibrium
liquid state.

The system being out of equilibrium, the dynamical observables will also have a
dependence on the waiting time tw, and on the chosen initial state [25, 26]. Thus, in particular,
the density autocorrelation functions are defined as

φq(tw + t, tw) ≡ 〈ρ∗
q(tw + t)ρq(tw)〉/〈|ρq(tw)|2〉 (2)

where ρq(t) = 1√
N

∑
i eiqri (t) and ri(t) are the coordinates of particle i at time t . The correlation

functions calculated in this paper always refer to all particles in the mixture. Averages are taken
over up to 136 independent initial configurations from the initial liquid state. To assess the
problem of a possible path dependence of the results, we also consider a different initial liquid
state, this time within the attractive region, i.e. φi = 0.58, Ti/u0 = 0.3 (labelled as B in
the figure). Moreover, we check that our results are waiting-time independent within a well
defined, even though narrow, time window. This has already been discussed in [29]. For the
present purposes, we recall that the results reported in this article correspond to t∗

w = 4 × 103

which provides sufficient equilibration for the decay processes taking place on a timescale one
order of magnitude smaller [26]. For this reason we only show the decay of correlation up to
t = 400. However, in order to provide convincing evidence that results for t < 400 do not
depend on the chosen tw, we will also report results corresponding to a tw larger by an order
of magnitude. Finally, we will discuss the behaviour of static structure factors in the glassy
region.

3. Results

Before showing the simulation results, we start by reporting MCT predictions. In figure 3,
we show the behaviour of the (total) non-ergodicity factor fq = limt→∞ φq(t) (where we
assume no waiting time dependence), crossing the glass–glass transition along an isochore, at
temperatures whose distance from the transition is the same as for the simulated points. It is
evident that fq does not change very much in the hard-sphere glass region, but jumps abruptly
at the glass–glass transition, and then changes dramatically with temperature in the attractive
region. We want here to draw the reader’s attention to the non-monotonic behaviour of fq

in the hard-sphere region with temperature, as this non-trivial feature will also be found in
the simulations. The crossing arises because at this isochore at intermediate temperatures (see
figure 2) there are two distinct transitions close by, i.e. a standard liquid–glass and a glass–glass
one, which can effectively compete. Similarly, if we plot the full time evolution of φq(t) at
the same points for a particular wavevector, e.g. at the static structure factor first peak, we find
a net difference in the levels of the plateaux reached, i.e. very high for the attractive glasses
and much lower for the hard-sphere ones (see figure 2(b) of [29]). We recall here that the
glass–glass transition is a purely kinetic phenomenon, which arises from the non-linearity of
MCT equations. Thus, there is no abrupt change in the static structure passing from one glass
to the other.

Now we turn to the simulation results. We plot the density autocorrelation functions
φq(t, t∗

w) for φ = 0.625 at all studied temperatures for the representative wavevector
qσBB 	 25, since their behaviour is similar for all studied wavevectors. The following features
are evident in figure 4.

• At higher temperatures, the system is already able to relax to its plateau, even within the
small time window studied. Also, the predicted non-monotonic behaviour of the plateau
with temperature, found theoretically, is reproduced in full detail.
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Figure 3. MCT predictions for the number density non-ergodicity parameter fq for φ 	 0.5362
(corresponding to φSIM = 0.625). The top one refers to high temperatures, in the hard-sphere
glass region, and the bottom one to the lower ones, in the attractive glass. The case T/u0 = 0.4 is
reported in both panels. Note the non-monotonicity of fq in the hard-sphere region, as well as the
difference of one order of magnitude in the qσ scale betwen the two panels.

• Lowering the temperature, there is a smooth change in the correlators, which start to
display a quite evident logarithmic decay, a signature of the higher order MCT singularity
that is close by.

• At temperatures already below the glass–glass line, i.e. for T/u0 � 0.4, the correlators
continue quickly to drop, below the expected attractive plateau; a further decrease in
temperature elongates the time duration of the plateau, but a decay at longer times is
present even in the extreme case T/u0 = 0.1.

• Looking in more detail, we observe that theoretically f q(T/u0 = 0.9) < fq(T/u0 = 0.65)

(see figure 3) while the simulations show the opposite feature at our final time of
observation. This may well be due to the inaccuracy of PY structure factors that we
used to solve MCT equations [30], or to the fact that hopping processes already start to
produce deviations from MCT at T/u0 = 0.65 (in this respect, at the immediately lower
temperature T/u0 = 0.5, MCT predictions are very far from the simulation data).

A very similar behaviour is found analysing the different packing fraction φ = 0.635,
already reported in [29]. The only difference from the previous case is that no evident crossing
of fq was found there. This is again in agreement with MCT, because the influence of the
liquid–glass transition is now less strong, since the chosen isochore lies more deeply into the
glassy region.

Conclusions that can be drawn from these results are that the hard-sphere glass predictions
are fully reproduced by simulations, while the attractive glass seems to be less stable than
predicted. An interpretation of these findings is possible taking into account a relevant
parameter for the system at low temperatures, i.e. the lifetime of the attractive bonds. The
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Figure 4. Density correlators calculated from the simulation at φ = 0.625 for qσBB 	 25 and
t∗w = 3754.

square well model is particularly suited to study bond dynamics, since a bond is unambiguously
defined when two particles have a pair interaction energy equal to −u0, i.e. they are at a distance
less than or equal to �. To monitor the dynamical evolution of the bonds, we introduce the
‘bond’ correlation function φB(tw + t, tw), defined as

φB(tw + t, tw) =
〈∑

i< j

ni j (tw)ni j(tw + t)

〉/
[NnB(tw)] (3)

where ni j (tw) is unity if two particles are bonded and zero otherwise, while nB(tw) ≡
〈∑i< j ni j(tw)〉/N is the average number of bonds per particle at tw. φB counts how many
of the bonds found at time tw are still present after time tw + t , independently from any
breaking–reforming intermediate process.

The time evolution of φB(tw + t, tw), shown in figure 5, is very similar to the one of
φq(tw + t, tw), suggesting that the decay of density–density correlation is associated with the
dynamics of bond breaking. The reason why the shape of the correlators in figure 5 looks similar
to density correlators even for high temperatures lies in the fact that we have also taken into
account bonds re-forming, once they are broken. Indeed, the packing fraction we are studying
(φ = 0.635) is well above the glass transition packing fraction (φg ∼ 0.58) for simple hard
spheres, thus particles are confined to rattle in their cages, and bonds are continuously broken
and reformed. To give convincing evidence of the different dynamics taking place at high
and low temperatures, we report in figure 6 the bond correlation function, at the two extreme
temperatures T/u0 = 0.1 and 1.5, defined above, as well as the same functions but where
ni j (tw) is set to zero at the time when the i j bond is broken, and kept to zero from then on,
irrespective of the presence of the i j bond at later times. In the high temperature case, the
bond correlation function goes almost to zero when broken bonds are not re-counted, while at
low temperature there is no substantial change. In our previous work [29], we have already
put forward the observation of relevance of bond dynamics for attractive glasses, by showing
how a characteristic type of hopping process takes place in the attractive glass, pre-empting
the observation of a sharp glass–glass transition, as predicted by MCT, and destabilizing the
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Figure 5. Time evolution of the bond correlators φB (tw + t, tw) for φ = 0.635 and t∗w. Temperatures
are the same as in the previous figure (corresponding to the same symbols).

0.01 0.1 1 10 100
0

0.2

0.4

0.6

0.8

1

φ 
B
(t,t

w
*)

T/u
0
=1.5

T/u
0
=1.5 (broken)

0.01 0.1 1 10 100
t

0.98

0.99

1

φ 
B
(t,t

w
*)

T/u
0
=0.1

T/u
0
=0.1  (broken)

Figure 6. Time evolution of the bond correlatorsφB (tw+t, tw) forφ = 0.635 and t∗w for temperatures
T/u0 = 1.5 and 0.1, comparing the case when bonds after being broken are still counted (same
as 5, dashed curves) or not (curves labelled as ‘broken’, full curves).

attractive glass. The study of the effect of the bond lifetime on the full dynamical behaviour
of short-ranged attractive colloids has also been explored in [31].

In the present work, we support the hypothesis of bond-breaking hopping processes pre-
empting the observation of a sharp glass–glass transition, as predicted by MCT, showing that
results for the density correlators as shown in figure 4 do not depend on the chosen waiting
time or on the history path dependence.
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Thereby, we first report in figure 7 the density correlation functions for three representative
temperatures, i.e. T = 1.5, 0.35, and 0.1, for a waiting time of 5 × 104, compared to the case
examined so far for a tw smaller by a full order of magnitude. These results are averaged over
up to 40 configurations only, due to the very large computer time involved in the calculation
(approximately 103 CPU hours for each temperature). It is evident that no significant change
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in the density correlator behaviour arises, though small discrepancies are also present due to
the larger errors present in the longer simulation runs. However, the most important feature to
underline is that an increase in waiting time is not manifest in an increase of the time duration
of the attractive plateau. Our study shows that the stability of such a plateau, i.e. of the bond
lifetime, can only be achieved by decreasing temperature. Thus, the observed phenomenon
is entirely due to bond dynamics, which is independent of the waiting time and completely
controls the attractive glass transition.

Of course, an interesting issue would be to know exactly where, at infinite times, the
attractive glass correlation functions would decay to. In other words, we know that the plateau
must be finite, and its lower bound should be represented by the hard-sphere plateau. So, we
can speculate that the long-time cage of the attractive glass is still of the order of the hard-
sphere one, though at each time particles are trapped within the attractive well-width, which
is highly affected by breaking processes, in contrast to simple packing. Unfortunately, we
cannot support this picture by simulations, since it would require many additional decades in
time, beyond computational efforts.

The last point we wish to address is the dependence on the chosen liquid initial state.
Indeed, one might argue that we started our non-equilibrium (compression + quenching) path
from a state point close to a hard-sphere glass. Thus, we can repeat the full procedure from a
different initial state close to the attractive glass transition. For this purpose, we refer to the
initial state point B of figure 2. Results for the density correlators are compared, for the two
different initial points, in figure 8, for temperatures T/u0 = 0.1, 0.4, and 0.9. It is clear that
quantitatively results are different, but qualitatively they are not. As expected, starting from
a lower temperature causes the produced glass to have a higher correlation function, i.e. it
imprints in it more of the attractive features. However, after the microscopic time, the decay is
very similar in the two cases. Most importantly, the lowest temperature plateau is not stabilized
by the different path.

It is interesting to note that if one examines the complete T -dependence of the density
correlators at the same isochore φ = 0.625 as in figure 4, but now starting from B, one does not
observe the same non-monotonic behaviour, at high temperatures, for the density correlators.
This is due to the fact that we are starting from a configuration close to the attractive line, which
somehow remains imprinted in the memory of the system (see figures 8, 9). Thus, probably,
our small time window of observation is not sufficient for the system to forget about its initial
state, which prevents the observation of smaller plateaux especially at higher temperatures.
In other words, the system cannot really feel enough competition from two transitions, and
the only relevant one for the dynamics here is the glass–glass one. Interestingly enough, this
behaviour resembles closely the one at the highest isochore (φ = 0.635) starting from A [29].

Finally, we want to focus on the behaviour of the static structure factors in the glassy region.
As explained above, S(q) is the input needed to solve MCT equations, and at the glass–glass
transition it does not have any peculiar change, other than the smooth one characteristic of
a slight change of thermodynamic control parameters. In figure 9, we show the (total) static
structure factors for T/u0 = 0.1 and 0.9 together with the equilibrium configuration one, both
for the path starting from point A (top panel) and from point B (bottom panel). It is clear that
the structure just changes smoothly along the quenching paths, but does change with respect
to the initial equilibrium state because of the density increase. In the glass, no detectable
waiting time dependence for the structure is observed. Static structure factors between the
two panels, corresponding to the same temperatures after different paths, cannot be really
distinguished within numerical errors. However, we expect small changes due to the different
imprinted structures for the initial state-point. This could help to explain why the results for
the dynamical correlators are different between the two paths (see figure 8). The results shown
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here for the static structure factors are quite different than those found in a micellar system [11],
and that could explain the different conclusions drawn in that paper.

4. Conclusions

In this paper, we have reported numerical simulations along the theoretically predicted glass–
glass transition between repulsive and attractive glass for a simple model of short-ranged
attractive colloids. A simple mapping between theory and simulations, performed for this
particular model, allowed us to have an accurate location of this glass–glass transition, and
thus to have a consistent test of the theoretical predictions by simulations in the glass.

Studying the glassy dynamics, we can discriminate time intervals where waiting time does
not play a significant role, and where there is only a minor dependence on the preparation of
the glassy state. It is, therefore, an ideal system to study and compare the two mechanisms of
glassification, i.e. packing and attraction.

Our results clearly show that a glass–glass transition exists. Indeed, there is a significant
difference in the dynamical behaviour between hard-sphere and attractive glass, though the
crossover from one kind to the other is smoother than predicted by MCT. Thus, the transition
is not manifest as sharply as predicted by the theory, due to bond-breaking processes that
reduce the stability of the attractive glass. The detailed studies of waiting time and path
dependence strengthen this interpretation, because they do not have any effect on the stability
of the attractive plateau. This, indeed, can only be made longer lasting by a decrease of
temperature, i.e. an (Arrhenius) increase of the bond lifetime. Therefore, we claim that bond-
breaking activated processes have the same relevance in attractive glass as they do in molecular
glass-formers, while hard-sphere glasses, due to their entropic origin, are basically unaffected
by them. On the other hand, the intrinsically different natures of the two glasses can still be
experimentally detected. In particular, for systems where the bond lifetime is long enough,
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or equivalently by looking at timescales that are shorter than the bond lifetime, the MCT
predictions for the glass–glass transition could be fully recovered.
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